top of page

Our main research focuses on understanding the mechanical properties of molecules, cells and tissue and their impact on biological function in the area of cardiovascular physiology and pathology.  Specifically, we are interested in the development of high-throughput measurement techniques that allow for a non-invasive and label-free assessment of cell state and function. This is of high importance in areas where molecular or biochemical labels are not available or not wanted, e.g. in regenerative therapies. To achieve this goal, we are combining concepts from optics, hydrodynamics and video microscopy.

Home: Welcome
Home: Group



Oliver Otto

Principal Investigator

Dr. Oliver Otto is our supreme leader and co-inventor of the RT-DC technique. He is a trained physicist with a passion for biology. In his spare time he likes pumping his bicycle, and running 10K just because he can. Beware, he is super friendly and likes cookies.

Stefanie Spiegler.jpg

Stefanie Spiegler

Post-Doc "Exultantis"

With a pair of molecular scissors at hand Stefanie is cutting across Biology with CRISPR/Cas9 technology and manipulating stems cells
to her heart content in an all-time showdown of how Biomechanics rules. Outside of the lab she rocks the world in the Zumba dance classes that she leads at the University.

Bob Fregin_edited.jpg

Bob Fregin

Post-Doc "Extraordinaire"

Bob is an electrical engineering graduate that came across biology as part of an optics project. To understand biology further is now his life quest, and he comes with full gear. He is a great cook, baker, and has unusual powers of fixing broken things. Some think he is half man, half machine.


Yesaswini Komaragiri

PhD Student "Acceleron"

Yesaswini graduated in Biotechnology and has set her mind to become a molecular biology expert in the field of cardiovascular research. With a pair of pipettes she is faster to pull the trigger than any wild west bandit - and when she enters the lab, we all know she is coming to collect the reward!


Doreen Biedenweg

Lab Technician "Supreme"

Doreen is our biology laboratory technician. She is the commander-in-chief of the daily running of our labs and without whom our lives would be a chaos. Unlike her crazy cat she cannot stand the smell of fish, but her ear will always pull her to a good rock music concert. On occasion, you might find her horse-riding.


Madhukiran Dabbiru

PhD Student "Examplaire"

Madhukiran, aka Madhu, is a biotechnologist that joined our group to work in the development of engineered heart tissues. Madhu's "all terrain" approach to science says he is a rare breed of fighter. When not exploring ideas in the lab, we might find him reading by the sea.


Muzaffar Panhwar

PhD Student "Magnus"

Muzaffar is our resident computer scientist that has an interest in cells and fluidic systems. While working in fundamental problems he is also keeping an eye on translation and application development.  He never misses a chance to travel together with friends and is always ready to join on a good laugh.


Emmanuel Manu

Research Assistant  "Electricus"

Emmanuel is an Electrical Engineer who boldly decided to resolve biological problems. After working as a Technical Engineer in a Hospital in Ghana, he decided to undertake a Master's program in Biomedical Engineering in Germany. He is now doing his thesis project with us, until he returns to the natural beauty and cooking delicacies of his home country..


Astrid Kempcke

Secretary "Eximius"

Astrid is our secretary, and the master behind our orderings, and many other formalities. For the rest of us she is a true headache saver. Aside from the occasional cake, Astrid is also our gateway to an endless supply of fresh eggs, pumpkins, plums and all sorts of vegetables, fruits and flowers she brings from her garden .



It is sad to see our colleagues go, but that's how life flows, isn't it? We stay together for so long and try to make the best and most of it. Luckily, from time to time former lab members come back to pay us a visit. This is the little corner where we remember them. 



Our Main Topics


Joint Interdisciplinary Projects

Method Development: High-Throughput Cell Mechanics

Stem Cell & Cardiomyocyte Mechanics

Home: Research
Home: TeamMembers
Home: Recent Publications


Interpretation of cell mechanical experiments in microfluidic systems depend on the choice of cellular shape descriptors.

Fregin B, Biedenweg D, Otto O.

Biomicrofluidics 2022 Apr 28; 16 (024109). doi: 10.1063/5.0084673

Switching in the expression pattern of actin isoforms marks the onset of contractility and distinct mechanodynamic behavior during cardiomyocyte differentiation.
Pires RH, Dau TH, Manu E, Shree N, Otto O.

Physiol Rep. 2022 Feb;10(3):e15171. doi: 10.14814/phy2.15171.

 Ex vivo anticoagulants affect human blood platelet biomechanics with implications for high-throughput functional mechanophenotyping.
Sachs L, Wesche J, Lenkeit L, Greinacher A, Bender M, Otto O, Palankar R.

Commun Biol. 2022 Jan 21;5(1):86. doi: 10.1038/s42003-021-02982-6.

Machine learning assisted real-time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes.
Herbig M, Jacobi A, Wobus M, Weidner H, Mies A, Kräter M, Otto O, Thiede C, Weickert MT, Götze KS, Rauner M, Hofbauer LC, Bornhäuser M, Guck J, Ader M, Platzbecker U, Balaian E.

Sci Rep. 2022 Jan 18;12(1):870. doi: 10.1038/s41598-022-04939-z.

 Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy.
Busch K, Kny M, Huang N, Klassert TE, Stock M, Hahn A, Graeger S, Todiras M, Schmidt S, Chamling B, Willenbrock M, Groß S, Biedenweg D, Heuser A, Scheidereit C, Butter C, Felix SB, Otto O, Luft FC, Slevogt H, Fielitz J.

J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):1653-1668. doi: 10.1002/jcsm.12763.

M. Mokbel, D. Mokbel, A. Mietke, N. Träber, S. Girardo, O. Otto, J. Guck, and S. Aland

ACS Biomaterials Science & Engineering (Article ASAP)

DOI: 10.1021/acsbiomaterials.6b00558



Press Release

May 2020

A press release has been published regarding our latest publication in Nature Communications:

"High-throughput Cell and Spheroid Mechanics in Virtual Fluidic Channels"  In this work by Panhwar, Czerwinski et al. we show for the first time high-throughput assays for tissue mechanics. Our results reveal that the stiffness of a single cell exceeds the one of tissue by a factor of 10 thus implying that tissue mechanics is governed to a significant extent by cell-cell interaction


Check the press release here (in German).

New Publication

May 2020

 High-throughput rheological measurements of cells and cell clusters by microfluidics is limited by fixed channel dimensions. Here the authors create virtual fluidic channels inside the cuvette of commercial flow cytometers to dynamically tune channel cross section to
enable rheological measurements from cells and cell clusters.


New Publication

April 2020

This Analysis compares microfluidics-based methods for assessing mechanical properties of cells in high throughput.

Home: News



University of Greifswald
Friedrich-Ludwig-Jahnstr. 15a
Greifswald, 17489


+49 (0)3834 420 5602

Home: Contact
Home: Welcome
bottom of page